Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646847

ABSTRACT

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Humans , Animals , Bees/microbiology , Fatty Acids, Volatile/metabolism , Genome, Bacterial , Food Microbiology , Metagenomics , Vitamins/metabolism , Phylogeny
2.
Adv Appl Microbiol ; 126: 93-119, 2024.
Article in English | MEDLINE | ID: mdl-38637108

ABSTRACT

The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Infant , Female , Humans , Gastrointestinal Tract/microbiology , Mothers , Diet
3.
mSystems ; 9(4): e0129423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38441032

ABSTRACT

The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems. IMPORTANCE: In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Metagenome/genetics , Bacteria/genetics , Vitamins
4.
Front Microbiol ; 15: 1349391, 2024.
Article in English | MEDLINE | ID: mdl-38426063

ABSTRACT

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

5.
Microbiome Res Rep ; 3(1): 4, 2024.
Article in English | MEDLINE | ID: mdl-38455080

ABSTRACT

Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.

6.
Appl Environ Microbiol ; 90(3): e0215223, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38334291

ABSTRACT

The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE: This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.


Subject(s)
Bacteriophages , Lactobacillales , Lactococcus lactis , Animals , Lactococcus lactis/genetics , Milk/microbiology , Bacteriophages/genetics , Fermentation
7.
Article in English | MEDLINE | ID: mdl-38354897

ABSTRACT

Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.


Subject(s)
Biphenyl Compounds , Carbamates , Depression , Gastrointestinal Microbiome , Animals , Male , Rats , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Lipidomics , Lipids , Rats, Wistar , Stress, Psychological/drug therapy
8.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38294252

ABSTRACT

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Subject(s)
Bifidobacterium adolescentis , Gastrointestinal Microbiome , Probiotics , Adult , Humans , Bifidobacterium adolescentis/genetics , Bifidobacterium adolescentis/metabolism , Gastrointestinal Microbiome/genetics , Bifidobacterium/genetics , Bifidobacterium/metabolism , Phylogeny
9.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291460

ABSTRACT

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Subject(s)
Gastrointestinal Microbiome , Nanoparticles , Animals , Humans , Silicon Dioxide/toxicity , Nanoparticles/toxicity , Intestinal Mucosa
10.
Microb Biotechnol ; 17(2): e14406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271233

ABSTRACT

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.


Subject(s)
Bifidobacterium bifidum , Animals , Bifidobacterium bifidum/genetics , Bifidobacterium/genetics , Epithelial Cells/microbiology , Mucins , Mammals
11.
Microbiome Res Rep ; 2(2): 15, 2023.
Article in English | MEDLINE | ID: mdl-38058405

ABSTRACT

The reconstruction of microbial genome sequences by bioinformatic pipelines and the consequent functional annotation of their genes' repertoire are fundamental activities aiming at unveiling their biological mechanisms, such as metabolism, virulence factors, and antimicrobial resistances. Here, we describe the development of the MEGAnnotator2 pipeline able to manage all next-generation sequencing methodologies producing short- and long-read DNA sequences. Starting from raw sequencing data, the updated pipeline can manage multiple analyses leading to the assembly of high-quality genome sequences and the functional classification of their genetic repertoire, providing the user with a useful report constituting features and statistics related to the microbial genome. The updated pipeline is fully automated from the installation to the delivery of the output, thus requiring minimal bioinformatics knowledge to be executed.

12.
Microbiome Res Rep ; 2(3): 23, 2023.
Article in English | MEDLINE | ID: mdl-38046821

ABSTRACT

Background: At birth, the human intestine is colonized by a complex community of microorganisms known as gut microbiota. These complex microbial communities that inhabit the gut microbiota are thought to play a key role in maintaining host physiological homeostasis. For this reason, correct colonization of the gastrointestinal tract in the early stages of life could be fundamental for human health. Furthermore, alterations of the infant microbiota are correlated with the development of human inflammatory diseases and disorders. In this context, the possible relationships between intestinal microbiota and body composition during infancy are of great interest. Methods: In this study, we have performed a pilot study based on 16S rRNA gene profiling and metagenomic approaches on repeatedly measured data on time involving a cohort of 41 Italian newborns, which is aimed to investigate the possible correlation between body fat mass percentage (FM%) and the infant gut microbiota composition. Results and conclusion: The taxonomical analysis of the stool microbiota of each infant included in the cohort allowed the identification of a specific correlation between intestinal bacteria, such as Bifidobacterium and Veillonella, and the increase in FM%. Moreover, the analysis of the infant microbiome's metabolic capabilities suggested that the intestinal microbiome functionally impacts the human host and its possible influence on host physiology.

13.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-37880979

ABSTRACT

Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental effects on animal health, milk productivity, and quality. Despite its multifactorial nature, the presence of pathogenic bacteria is regarded one of the main drivers of subclinical mastitis, causing a disruption of the homeostasis of the bovine milk microbial community. However, bovine milk microbiota alterations associated with subclinical mastitis still represents a largely unexplored research area. Therefore, the species-level milk microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-affected cows from two different stables, was deeply profiled through an ITS, rather than a traditional, and less informative, 16S rRNA gene microbial profiling. Surprisingly, the present pilot study not only revealed that subclinical mastitis is characterized by a reduced biodiversity of the bovine milk microbiota, but also that this disease does not induce standard alterations of the milk microbial community across stables. In addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical mastitis is accompanied by a significant increment in the number of milk microbial cells. Furthermore, the combination of the metagenomic and flow cytometry approaches allowed to identify different potential microbial marker strictly correlated with subclinical mastitis across stables.


Subject(s)
Mastitis, Bovine , Microbiota , Cattle , Animals , Female , Humans , Milk/microbiology , RNA, Ribosomal, 16S/genetics , Pilot Projects , Mastitis, Bovine/microbiology , Mastitis, Bovine/pathology , Microbiota/genetics
14.
Int J Food Microbiol ; 407: 110415, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-37774633

ABSTRACT

Lactococcus spp. are applied routinely in dairy fermentations and their consistent growth and associated acidification activity is critical to ensure the quality and safety of fermented dairy foods. Bacteriophages pose a significant threat to such fermentations and thus it is imperative to study how these bacteria may evade their viral predators in the relevant confined settings. Many lactococcal phages are known to specifically recognise and bind to cell wall polysaccharides (CWPSs) and particularly the phospho-polysaccharide (PSP) side chain component that is exposed on the host cell surface. In the present study, we generated derivatives of a lactococcal strain with reduced phage sensitivity to establish the mode of phage evasion. The resulting mutants were characterized using a combination of comparative genome analysis, microbiological and chemical analyses. Using these approaches, it was established that the phage-resistant derivatives incorporated mutations in genes within the cluster associated with CWPS biosynthesis resulting in growth and morphological defects that could revert when the selective pressure of phages was removed. Furthermore, the cell wall extracts of selected mutants revealed that the phage-resistant strains produced intact PSP but in significantly reduced amounts. The reduced availability of the PSP and the ability of lactococcal strains to revert rapidly to wild type growth and activity in the absence of phage pressure provides Lactococcus with the means to survive and evade phage attack.


Subject(s)
Bacteriophages , Lactococcus lactis , Bacteriophages/genetics , Bacteriophages/metabolism , Lactococcus lactis/metabolism , Polysaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/metabolism , Cell Wall/metabolism , Mutation
15.
Microbiol Spectr ; : e0219423, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728335

ABSTRACT

The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.

16.
Microorganisms ; 11(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37630498

ABSTRACT

Gender differences and microbiota are gaining increasing attention. This study aimed to assess gender differences in gastric bacterial microbiota between subjects with healthy stomachs and those with autoimmune atrophic gastritis. This was a post hoc analysis of 52 subjects undergoing gastroscopy for dyspepsia (57.7% healthy stomach, 42.3% autoimmune atrophic gastritis). Gastric biopsies were obtained for histopathology and genomic DNA extraction. Gastric microbiota were assessed by sequencing the hypervariable regions of the 16SrRNA gene. The bacterial profile at the phylum level was reported as being in relative abundance expressed as 16SrRNA OTUs (>0.5%) and biodiversity calculated as Shannon-diversity index-H. All data were stratified for the female and male gender. Results showed that women with healthy stomachs had a higher gastric bacterial abundance and less microbial diversity compared to men. Likely due to hypochlorhydria and the non-acid intragastric environment, autoimmune atrophic gastritis seems to reset gender differences in gastric bacterial abundance and reduce biodiversity in males, showing a greater extent of dysbiosis in terms of reduced biodiversity in men. Differences between gender on taxa frequency at the phylum and genus level in healthy subjects and autoimmune atrophic gastritis were observed. The impact of these findings on the gender-specific natural history of autoimmune atrophic gastritis remains to be elucidated; in any case, gender differences should deserve attention in gastric microbiota studies.

17.
Microb Biotechnol ; 16(9): 1774-1789, 2023 09.
Article in English | MEDLINE | ID: mdl-37491806

ABSTRACT

The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.


Subject(s)
Lactobacillus crispatus , Vagina , Lactobacillus crispatus/classification , Lactobacillus crispatus/genetics , Lactobacillus crispatus/growth & development , Lactobacillus crispatus/metabolism , Genome, Bacterial , Evolution, Molecular , Vagina/chemistry , Vagina/microbiology , Humans , Female , Lactobacillus/classification , Lactobacillus/genetics , Carbohydrate Metabolism
18.
Nat Commun ; 14(1): 4220, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452041

ABSTRACT

Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Male , Humans , Female , Gastrointestinal Microbiome/genetics , Bifidobacterium/genetics , Bifidobacterium/metabolism , Bacteria/genetics
19.
Health Policy ; 134: 104859, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343450

ABSTRACT

This paper documents how a prompter implementation of stricter policy measures in Italy would have reduced by about one-fourth of total COVID-19-related deaths during the first wave of the pandemic. The empirical evidence suggests that rigid but timely restrictions would have been a more effective policy tool than implementing progressively stricter measures over an extended period.


Subject(s)
COVID-19 , Humans , Pandemics , Italy/epidemiology , Policy
20.
Microbiol Spectr ; 11(3): e0066523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37191543

ABSTRACT

Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Infant , Humans , Infant, Newborn , Female , Pregnancy , Milk, Human/metabolism , Milk, Human/microbiology , Bifidobacterium/genetics , Bifidobacterium/metabolism , Insulin/metabolism , Feces/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...